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Abstract 
 

In a distributed control system containing multiple clocks, individual clocks tend to drift 
apart. Hence, individual clocks need to be corrected to synchronize and maintain time to required 
accuracy. In this paper, we present a frequency compensated clock to achieve precision 
synchronization amongst distributed clocks using IEEE 1588 protocol to exchange timing 
information. Further, we explore its application to Ethernet. 
 
 
1.0 Introduction 
 

In a distributed control system containing multiple clocks, individual clocks tend to drift 
apart due to instabilities inherent in source oscillators and environmental conditions such as 
temperature, air circulation, mechanical stresses, vibration, aging etc. Hence, some kind of 
correction is necessary to synchronize individual clocks to maintain the notion of global time, 
which is accurate to some requisite clock resolution. The IEEE 1588 standard [1] for a precision 
clock synchronization protocol for networked measurement and control system standardizes time 
and defines several messages that can be used to distribute timing information, but leaves it to 
implementation the means to achieve precision clock synchronization. 

 
One important implementation and application specific issue is what to do with 

distributed time. A simple solution is to snap to new time value when time distribution arrives by 
setting the local clock to new value. In distributed control and in many other applications, this 
simple solution is not practicable. For example, in distributed drive/motion control applications 
snapping to new time value may break those applications. Therefore, it is necessary to manage 
drifts and maintain time between time distributions. One way to achieve this is to use accurate 
temperature compensated or oven controlled oscillators as clock source. However these 
oscillators are expensive. Hence, a solution using inexpensive standard crystal oscillators is 
preferable. 

 
Figure 1 shows the clock drift phenomenon on a slave clock between time distribution 

(Sync) messages from master clock. At time MasterSyncTimen-1 the master clock sends Sync 
message to slave clock(s). The slave receives this message after a delay equal to transit time 
from master to slave (MasterToSlaveDelay) at MasterClockTimen-1 and sets its clock such that 
 
 SlaveClockTimen-1 = MasterClockTimen-1 = MasterSyncTimen-1 + MasterToSlaveDelay 
 
 Where n denotes the Sync message count from master to slave. 
 



 At time MasterSyncTimen the master sends next Sync message to slave clock. The slave 
receives this message at MasterClockTimen, but the SlaveClockTimen has drifted apart by 
SlaveClockDrift. Therefore 
 
 MasterClockTimen = MasterSyncTimen + MasterToSlaveDelay 
 

SlaveClockTimen = MasterSyncTimen + MasterToSlaveDelay + SlaveClockDrift 
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Figure 1: Timing Messages 

 
 Therefore, the slave clock has to be corrected such that  
 

1. The frequencies of master and slave clocks have to equal each other. 
2. The discrepancy between values of MasterClockTime and SlaveClockTime at any 

given instant should be eliminated or at least minimized. 
 
The following sections present a simple but accurate, frequency compensated clock using 

standard inexpensive crystal oscillators to achieve these two objectives.  
 
 
2.0 Frequency Compensated Clock 
 

 As shown in Figure 2, the frequency compensated clock is comprised of a p-bit clock 
counter, a q-bit accumulator as high precision frequency divider and an r-bit addend register 
holding frequency compensation value (FreqCompensationValue). All the constituents of 
frequency compensated clock operate at the frequency of input oscillator (FreqOscillator). The 



FreqCompensationValue contained in addend register is added to accumulator once every 
1/FreqOscillator. The clock counter is incremented whenever the accumulator asserts an 
overflow pulse signal. Therefore the nominal frequency at which the clock counter is 
incremented is FreqClock and is determined by FreqCompensationValue. 
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Figure 2: Frequency Compensated Clock 
 
 The ratio of FreqOscillator to FreqClock is a design constant chosen initially to be a 
number greater than 1.0001, where 1.0001 corresponds to 0.01% oscillator stability. Though for 
0.01% (+/-100 PPM) stability oscillator frequency drift rate may be an infinite precision real 
number between 0.9999 and 1.0001, it is not possible to compensate in hardware for infinite 
precision. Let CompensationPrecision be a constant number representing the highest precision 
desired for frequency compensation, and SyncInterval be a number representing interval between 
Sync messages in seconds. The following relationships can be used to determine the widths of 
accumulator, clock counter and addend register that will provide adequate precision for 
frequency compensation. 
 
 FreqDivisionRatio = FreqOscillator / FrequencyClock 
 CompensationPrecision <= 1 / (SyncInterval * FreqClock) 
 2q >= FreqDivisionRatio / CompensationPrecision 
 2r >= 2q / FreqDivisionRatio 
 2p >= 2q 
 
 For example, FreqOscillator is 50MHz, FreqClock is 40 MHz, FreqDivisionRatio is 1.25, 
SyncInterval is 1 second, CompensationPrecision is 1x10-9, width of accumulator q is 32, width 
of addend register r is 32 and width of clock counter p is 64 to provide a clock resolution of 25 
nanoseconds. 



 
 The accumulator-addend register pair implements a high precision frequency divider 
whose accuracy is at least equal to CompensationPrecision. The accumulator-addend register 
pair operate by emitting N clock cycles of width Floor(FreqDivisionRatio) / FreqOscillator 
followed by a cycle with a width of  Floor(FreqDivisionRatio+1) / FreqOscillator or 
Floor(FreqDivisionRatio-1) / FreqOscillator as appropriate. Where Floor operator rounds down 
real number to an integer and N is an integer determined by FreqCompensationValue. 
 
 
3.0 Frequency Compensation Algorithm 
 
 Initially the slave clock is set with a FreqCompensationValue0 as follows 
 
 FreqCompensationValue0 = 2q / FreqDivisionRatio 
 
 Let the MasterToSlaveDelay be set to zero initially and the algorithm described below be 
applied. After a few Sync cycles, frequency lock will occur. Then the slave clock can determine 
precise value for MasterToSlaveDelay and resynchronize with master using new value. 
 

The following is a description of algorithm proper. At time MasterSyncTimen the master 
sends a Sync message to slave clock. The slave receives this message when its local clock is 
SlaveClockTimen and computes MasterClockTimen as 
 
 MasterClockTimen = MasterSyncTimen + MasterToSlaveDelay 
 
 The master clock count for current Sync cycle, MasterClockCountn is given by 
 
 MasterClockCountn = MasterClockTimen - MasterClockTimen-1 
 
 The slave clock count for current Sync cycle, SlaveClockCountn is given by 
 
 SlaveClockCountn = SlaveClockTimen - SlaveClockTimen-1 
 
 The difference between master and slave clock counts for current Sync cycle, 
ClockDiffCountn is given by 
 
 ClockDiffCountn = MasterClockTimen - SlaveClockTimen  
 
 The frequency-scaling factor for slave clock, FreqScaleFactorn is given by 
 
 FreqScaleFactorn = (MasterClockCountn + ClockDiffCountn) / SlaveClockCountn  
 
 The frequency compensation value for addend register, FreqCompensationValuen is 
given by 
 
 FreqCompensationValuen = FreqScaleFactorn * FreqCompensationValuen-1 



 
 Theoretical result of this algorithm is that at SlaveClockTimen+1, the frequencies of 
master and slave clocks would lock, and differences between their clocks ClockDiffCountn+1 
would be zero. In other words, this algorithm would achieve a lock in one Sync cycle. Therefore 
the following statements are true with respect to this algorithm, assuming constant network 
propagation delays and gradually changing operating conditions such as temperature: 
 

1. When the clocks drift at a constant rate, the frequency and clock locks between 
master and slave will be achieved in one Sync cycle and would stay locked after that. 

2. When the clocks drift apart at a gradually changing drift rate over time, the slave 
clock will track master clock very closely by locking frequencies/clock values in one 
Sync cycle whenever clock drift is detected. 

 
This algorithm has a self-correcting property. If for any reason the slave clocks set their 

initial local clock values from master slightly incorrect, it will be corrected at a cost of couple of 
more Sync cycles. 
 
 
4.0 Implementation on Ethernet 
 
 The frequency compensated clock was implemented on an FPGA with message detection 
and time stamping logic monitoring media independent interface signals between network 
transceiver and medium access controller for IEEE 802.3/Ethernet. An inexpensive standard 
crystal oscillator with a frequency of 50MHz was used as input. The oscillator frequency was 
divided down to a nominal clock frequency of 40MHz or 25ns clock resolution. The slave clock 
was locked on to master clock with a deviation of +/-25ns most of the time and a worst case 
deviation of +/-100ns was observed on a switched 100Mbps Ethernet with some background 
traffic. The behavior was similar in the case of 100Mbps half-duplex mode network with 
repeater. 
 
 The accuracy of synchronization was largely limited by the random delay components 
introduced by network transceivers on transmit/receive ends. With higher background traffic 
switch delays will further limit accuracy and will necessitate some sort of filtering. In addition 
random delays tend to increase the number of Sync cycles required to achieve lock. One 
important requirement for frequency compensated clock is to have a source oscillator with good 
short term stability for 1 sec, since it cannot compensate for that. The Allen deviation of many 
standard crystal oscillators were found to be 50x10-9 for 1 second gate time and some were found 
to be even better at couple of parts per billion. Hence the frequency compensated clock with 
standard crystal oscillators can satisfy accuracy requirements for many applications. 
 
 
6.0 Conclusions 
 
 The frequency compensated clock provides a simple and accurate way to implement 
IEEE 1588 standard for precision synchronization. It provides high accuracy with inexpensive 



standard crystal oscillators. It maintains time and manages drift accurately even in the presence 
of lost synchronization messages. It can be easily adapted for various networks and applications.  
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